Mapping Structure

Mappings in Machina Sports are defined in YAML format with the following structure:

mappings:
  - type: "mapping"
    title: "Mapping Title"
    name: "mapping-name"
    description: "Description of the mapping purpose"
    outputs:
      output_field: "$.get('source_data', {}).get('path.to.field')"
      calculated_field: "$.get('field1') + ' ' + $.get('field2')"

Each mapping uses JSONPath expressions to extract and transform data from the source format to the target format.

Real-World Examples

Sports Data Mapping

This example from our samples shows how to map soccer event data:

- type: "mapping"
  title: "Sportradar Soccer Mapping"
  name: "sportradar-soccer-mapping"
  description: "Mapping data from sportradar soccer data"
  outputs:
    event_code: "$.get('event_selected', {}).get('sport_event', {}).get('id')"
    team_home_name: "$.get('event_selected', {}).get('sport_event', {}).get('competitors', [])[0].get('name')"
    team_away_name: "$.get('event_selected', {}).get('sport_event', {}).get('competitors', [])[1].get('name')"
    team_home_id: "$.get('event_selected', {}).get('sport_event', {}).get('competitors', [])[0].get('id')"
    team_away_id: "$.get('event_selected', {}).get('sport_event', {}).get('competitors', [])[1].get('id')"
    title: "$.get('event_selected', {}).get('title')"

Team Profile Mapping

This example maps NBA team profile data:

- type: "mapping"
  title: "Sportradar NBA Team Mapping"
  name: "sportradar-nba-team-mapping"
  description: "Mapping data from sportradar nba team data"
  outputs:
    team_id: "$.get('team_profile', {}).get('id')"
    team_name: "$.get('team_profile', {}).get('name')"
    team_alias: "$.get('team_profile', {}).get('alias')"
    team_market: "$.get('team_profile', {}).get('market')"
    team_full_name: "$.get('team_profile', {}).get('market') + ' ' + $.get('team_profile', {}).get('name')"
    conference: "$.get('team_profile', {}).get('conference', {})"
    division: "$.get('team_profile', {}).get('division', {})"
    championships_won: "$.get('team_profile', {}).get('championships_won')"
    championship_seasons: "$.get('team_profile', {}).get('championship_seasons')"

Using Mappings in Workflows

Mappings are used in workflows as tasks to transform data:

- type: "mapping"
  name: "sportradar-nba-team-mapping"
  description: "Transform the SportRadar NBA team data"
  inputs:
    team_profile: "$.get('team-profile')"
  outputs:
    team_id: "$.get('team_id')"
    team_name: "$.get('team_name')"
    team_full_name: "$.get('team_full_name')"
    championships_won: "$.get('championships_won')"

Common Mapping Patterns

Nested Data Extraction

Extract values from deeply nested JSON structures using JSONPath expressions.

Field Renaming

Map fields from source format to differently named fields in the target format.

Data Combination

Combine multiple source fields into a single target field (e.g., first_name + last_name → full_name).

Default Values

Provide default values when source fields might be missing.

Array Processing

Extract and transform elements from arrays in the source data.

Best Practices

  • Use descriptive mapping names that indicate the source and purpose
  • Include proper error handling with default values for missing fields
  • Keep mappings focused on a single data type or entity
  • Test mappings with various data scenarios to ensure robustness
  • Document complex transformations with comments

Next Steps

  • Explore Connectors to understand available data sources
  • Learn about Workflows to see how mappings are used in data processing
  • Review Agents to understand how mapped data powers fan interactions